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Synopsis

In this work we study the thermodynamics of an interacting φ4 theory in 4 space-

time dimensions. The expressions for the thermodynamic quantities are worked

out, anisotropic lattice regularization is explained. The renormalisation conditions

are discussed and expression for the β and the γ functions are obtained in pertur-

bation theory to 1 loop order. The anisotropy coefficients are also calculated to 1

loop order in perturbation theory. This is the first report for the calculation of the

anisotropy coefficient in an interacting φ4 theory. The algorithms used for a non-

perturbative study and their numerical implementation are discussed. The results

obtained using these algorithms are compared with the existing results in the liter-

ature. The choice of the points on which the simulations were done is justified. The

procedure of removing the ultraviolet divergence via subtraction is described. Fi-

nally, the use of finite size scalings to establish the thermodynamic limit for the

obtained results is elaborated upon.
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Chapter 1

Introduction

Scalar field theories are simple and pedagogically important for the study of many

important concepts in quantum field theory. Besides, they have been seriously con-

sidered to shed light on real physics issues, such as in the Higgs sector of the Stan-

dard Model. Techniques involving resummation of Feynman diagrams to control the

infra-red singularity that arise in bosonic field theories at finite temperatures have

been first applied to the case of the scalar φ4 theory before trying to use them to

obtain thermodynamics of quantum chromodynamics.

In this thesis, we aim to study the equation of state non-perturbatively on the lat-

tice for the case of the 1-component real φ4 theory in the symmetric phase. At zero

temperature, this model has been extensively studied to establish its triviality in

the continuum limit [1] [2] [3] [4]. Finite size investigations of physical quantities

have been studied in [5] [6] [7]. Algorithmic improvements have also been tested on

this model in [8] [9]. Thermodynamics of lattice theories were first studied in the

context of gauge fields [10] [11] [12]. For scalar fields the first studies were naturally

on free systems and involved a systematic study of the cut-off effects [13] [14]. Issues

of zero mode contributions for massless scalar theories were studied in [15] [16]. Fi-

nite temperature studies of a lattice φ4 theory using variational approximation were

treated in [17] [18].

1
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Chapter 2

Setting up the thermodynamics

Consider a theory with Hamiltonian H at a physical temperature β = 1/T . The

partition function is given by

Z(β) = Tr(e−βH) (1)

The thermal expectation value of an operator O (that depends on the fields ϕ) in

path integral notation is

〈O(ϕ)〉 =
1

Z(β)

∫

Dϕe−βHO(ϕ) (2)

For a finite temperature study, the extents in the spatial directions, L1 = L2 = L3 =

L, must be much larger than the extent in the temporal direction, T ; i.e, L ≫ T . In

addition the bosonic fields must satisfy periodic boundary conditions while the

fermionic ones are imposed with anti-periodic boundary conditions.

2.1 Lattice Thermodynamics

The thermodynamic quantities of interest are obtained as derivatives of the partition

function Z. If V = L3 = (Nsa)3 denotes the spatial volume and T = β−1 =

(Nta)−1 the temperature, where a is the lattice spacing and Ns and Nt are the

3



4 CHAPTER 2. SETTING UP THE THERMODYNAMICS

number of lattice points in the spatial and temporal directions respectively, then

the expressions for the energy density and pressure are

E = − 1

V

∂ lnZ
∂β

∣

∣

∣

∣

V

=
T 2

V

∂ lnZ
∂T

∣

∣

∣

∣

V

(3)

P = T
∂ lnZ
∂V

∣

∣

∣

∣

T

(4)

Note that these formulae require taking derivatives with respect to the “temper-

ature” keeping the “volume” constant. To facilitate this procedure, the system is

formulated on an anisotropic lattice with the spacing along the time and space

directions taken to be at and as respectively. The anisotropy parameter is defined

as:

ξ =
as

at

(5)

In our analysis, we use at to scale all dimensional quantities since it is the one

most naturally linked to temperature. The set (at,ξ) will be chosen as the set of

independent parameters and all expressions involving as will be re-expressed as a

function of these two quantities.

Now, for example, to get E the volume is to be kept constant while taking derivative

with respect to the temperature. This amounts to differentiating with respect to

at holding as constant. In this formalism this is implemented by using a change of

variables to re-express this derivative as:

∂

∂at

∣

∣

∣

∣

as

= − ξ

at

∂

∂ξ

∣

∣

∣

∣

at

+
∂

∂at

∣

∣

∣

∣

ξ

(6)

After substituting for V and T , the expressions for the quantities of interest are

Ea4
t =

1

N3
s Nt

1

ξ3

{

ξ
∂ lnZ

∂ξ

∣

∣

∣

∣

at

− at

∂ lnZ
∂at

∣

∣

∣

∣

ξ

}

(7)

Pa4
t =

1

3N3
s Nt

1

ξ2

∂ lnZ
∂ξ

∣

∣

∣

∣

at

(8)

(E − 3P )a4
t = − 1

N3
s Nt

at

ξ3

∂ lnZ
∂at

∣

∣

∣

∣

ξ

(9)

Note that the quantities Ea4
t , Pa4

t and (E − 3P )a4
t are all dimensionless quantities

and will henceforth be referred to as E, P and E − 3P respectively in lattice
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units. The derivatives of the couplings of the theory with respect to the anisotropy

parameter ξ are known as the anisotropy coefficients. This work reports the first

evaluation of the anisotropy coefficients for the scalar φ4 theory, the details of which

are discussed in section 2.2.3.

2.2 The lattice φ4 theory

The action of the scalar field theory in continuum Euclidean space:

S[φ] =

∫

dt

∫

d3x

{

1

2
∂µφ(x)∂µφ(x) +

1

2
m2

0φ(x)2 +
g0

4!
φ(x)4

}

(10)

where m0 is the bare mass and g0 is the bare self-coupling.

The action on the lattice is obtained by replacing the derivatives ∂µ by finite dif-

ferences ∆i defined as

∆if(x) =
f(x + ai) − f(x)

ai

(11)

where ai is the lattice spacing along the direction i. To go to the standard form of

the action for doing simulations we trade off the set of couplings (g0, m0) in favour

of (κ, λ). They are related to each other by the following implicit set of equations:

κ =
1 − 2λ

3ξ + ξ3 + ((atm0)2/2)ξ3
; κt = κsξ

2 = κξ3; λ =
g0

24
ξ3κ2 (12)

Further, scaling out the dimensions of the mass and the field

φ̂ = at

φ√
κ

; m̂0 = atm0 (13)

the action can be recast in the form of a generalized spin model

S[φ̂] =
∑

xα

{

−κs

3
∑

i=1

φ̂(xα + ai)φ̂(xα) − κtφ̂(xα + at)φ̂(xα)

+ φ̂(xα)2 + λ(φ̂(xα)2 − 1)2
}

(14)
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This is the conventional form for doing simulations. Henceforth all the hatted quan-

tities are dimensionless.

While studying the thermodynamics, it is useful to measure the thermodynamic

quantities as relative shifts from their zero temperature values, which also serve to

cancel the zero temperature divergent terms in the corresponding quantities. Thus

we renormalise the pressure to be zero at T = 0, or in other words we measure

P (T ) − P (0). This is true for the energy density and E − 3P as well. To achieve

this the expectation value of the operators calculated in the zero temperature limit

are subtracted from their finite temperature counterparts. This procedure will be

denoted by adding the subscript “subt” to the operators. In terms of the action S

the expression of the thermodynamic quantities become:

Ea4
t =

1

ξ3

{

−ξ

〈

∂S

∂ξ

∣

∣

∣

∣

at

〉

subt

+

〈

at

∂S

∂at

∣

∣

∣

∣

ξ

〉

subt

}

Pa4
t = − 1

3ξ2

〈

∂S

∂ξ

∣

∣

∣

∣

at

〉

subt

(E − 3P )a4
t =

1

ξ3

〈

at

∂S

∂at

∣

∣

∣

∣

ξ

〉

subt

(15)

where bracketed quantities denote expectation values taken with respect to the

probability density ρ[φ] = e−S[φ̂]/Z. Thus in order to proceed we need to find

explicit expressions for the anisotropy coefficients (derivatives of the couplings with

respect to ξ) and the β- and γ- functions (derivatives of the couplings with respect to

at). This evaluation will be attempted in 1-loop perturbation theory. The rationale

for using perturbation theory at this level will be discussed in a later chapter. After

calculating the expressions for the physical quantities, ξ is set to unity.
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2.2.1 Renormalization conditions

This sub-section just sets the conventions used in this work. These are mainly

adopted from [21] which the reader can consult for details. The anisotropic propa-

gator is

G(k) = 〈φ̂(k)φ̂(−k)〉 =
1

κ

1

4ξ
∑3

i=1 sin2(ki/2) + 4ξ3 sin2(k4/2) + ξ3m̂2
0

(16)

In 1 loop perturbation theory the Feynman diagrams that need to be summed to

get the renormalized quantities are shown in fig(1). The square of the renormalized

mass is defined to be the negative of the two-point renormalized vertex function at

zero external momentum:

m̂2
R = −Γ

(2)
R (0) (17)

On the other hand, the physical mass ma, measured from the correlators is defined

to be the poles of the propagator at zero external momentum and is related to m̂R

through the relation:

m̂R = 2 sinh
(ma

2

)

(18)

The renormalized coupling is defined through the four-point vertex function at zero

external momentum:

gR = −Γ
(4)
R (0, 0, 0, 0) (19)

2.2.2 Evaluation of the β and γ functions

Equation (15) requires the evaluation of the following derivatives:

dκs
= at

∂κs

∂at

∣

∣

∣

∣

ξ

; dκt
= at

∂κt

∂at

∣

∣

∣

∣

ξ

; dλ = at

∂λ

∂at

∣

∣

∣

∣

ξ

cκs
= κ′

s|at
; cκt

= κ′

t|at
; cλ = λ′|at

where

f ′ =
∂f(ξ)

∂ξ
(20)
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Mass correction

Coupling Constant correction

Figure 1: The Feynman diagrams that need to be calculated

The first three of these derivatives are completely specified by the β- and γ- func-

tions defined as

β(g0) = at

∂g0

∂at

∣

∣

∣

∣

ξ

γ(m̂0) = at

∂m̂0
2

∂at

∣

∣

∣

∣

ξ

(21)

The evaluation of these two functions is standard and is discussed in detail in

[21]. Here, we simply write down the final formulae upto 1 loop order noting that

while taking this derivative with respect to at one needs to keeps ξ constant.

at

∂m̂2
0

∂at

∣

∣

∣

∣

ξ

= at

∂m̂2
R

∂at

∣

∣

∣

∣

ξ

[

1 − gR

2

(

1

16π2
ln(m̂2

R) +
1

16π2
+ r1

)]

at

∂g0

∂at

∣

∣

∣

∣

ξ

=
3

2
g2

R at

∂J2(m̂R, ξ)

∂at

∣

∣

∣

∣

ξ

J2(mR, ξ) =

∫

∞

0

dx xe−x(ξ3m2

R
+6ξ+2ξ3)I3

0 (2ξx)I0(2ξ
3x) (22)
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where r1 is a constant and In(x) denotes the modified Bessel function of order n.

In perturbation theory, we have:

at

∂m̂2
R

∂at

∣

∣

∣

∣

ξ=1

= 4ma sinh(
ma

2
) cosh(

ma

2
)

at

∂J2(m̂
2
R)

∂at

∣

∣

∣

∣

ξ=1

= − ma

16π2
coth(

ma

2
) (23)

In the continuum limit (when scaling violations disappear) the first universal coef-

ficient β0 of the beta-function can be worked out to be 3
16π2 . The other coefficients

can be written down using these expressions:

dκs
= at

∂κs

∂at

∣

∣

∣

∣

ξ=1

= − 1

4 + m̂2
0/2 + (g0κ)/6

[

at

∂g0

∂at

∣

∣

∣

∣

ξ=1

κ2

12
+

1 − 2λ

2(4 + m̂2
0/2)

at

∂m̂2
0

∂at

∣

∣

∣

∣

ξ=1

]

dκt
= at

∂κt

∂at

∣

∣

∣

∣

ξ=1

= at

∂κs

∂at

∣

∣

∣

∣

ξ=1

dλ = at

∂λ

∂at

∣

∣

∣

∣

ξ=1

= at

∂g0

∂at

∣

∣

∣

∣

ξ=1

κ2

24
+

g0κ

12
at

∂κs

∂at

∣

∣

∣

∣

ξ=1

(24)

2.2.3 Evaluation of the anisotropy coefficients

The anisotropy coefficients that need to be evaluated for the scalar theory are κ′

s, κ′

t

and λ′. Here they are evaluated to one-loop order only. They can in turn be expressed

in terms of (m̂2
0)

′ and g′

0 appearing in the Lagrangian and can be evaluated from the

renormalized vertex functions. To evaluate the mass-squared anisotropy parameter

we sum the relevant diagrams in fig. (1) and obtain the following formula:

(m̂2
0)

′
∣

∣

ξ=1
=

gR

2

∫

∞

0

xdxe−(m̂2

R
+8)x

[

(3m̂2
R + 12)I4

0 (2x) − 12I3
0(2x)I1(2x)

]

(25)

where In(x) denotes the modified Bessel function of order n. While differentiating

with respect to ξ, at is kept constant and since m is already a constant, m̂R as a

whole is constant. Using exactly the same techniques and summing the relevant
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diagrams we obtain the anisotropy coefficient for the self coupling:

g′

0|mR,at=const =
3

2
g2

R J ′

2|mR,at=const

J ′

2|mR,at=const =

∫

∞

0

x2dxe−x(m̂2

R
+8)
[

12I3
0 (2x)I1(2x) − (3m̂2

R + 12)I4
0 (2x)

]

(26)

where g0 and gR refer to the bare and renormalized quantities respectively. Using

these expressions the anisotropy coefficients for κs, κt and λ are:

cκs
= κ′

s|at
= − 1

(4 + m̂2
0/2 + (g0κ)/6)

[

g′

0|at

κ2

12
+

g0κ
2

12
+

+
(1 − 2λ)(2 + m̂2

0 + 1
2

(m̂2
0)

′|at
)

4 + m̂2
0/2

]

cκt
= κ′

t|at
= 2κ + κ′

s|at

cλ = λ′|at
= g′

0|at

κ2

24
+

g0κ
2

24
+

g0κ

12
κ′

s|at

(27)

While calculating these expressions numerically one must be careful about large

numbers. Although the numerical values of the coefficients may be small, they

involve a rather delicate subtraction among the Bessel functions. The routines given

in the Numerical Recipes [22] generate numbers that often exceed the range of the

common C compilers. The actual evaluation of these coefficients were therefore done

using Mathematica [23] which could handle much larger ranges of the functional

values.
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2.3 Expressions for thermodynamic quantities

Compact expressions for the thermodynamics observables in dimensionless notation:

Ea4
t =

(

〈
3
∑

i=1

φ̂(xα + ai)φ̂(xα)〉sub

)

(

cκs
|at

− dκs
|ξ
)

+
(

〈φ̂(xα + at)φ̂(xα)〉sub

)(

cκt
|at

− dκt
|ξ
)

+
(

2〈φ̂(xα)2〉sub − 〈φ̂(xα)4〉sub

)(

cλ|at
− dλ|ξ

)

(28)

Pa4
t =

1

3

[

〈
3
∑

i=1

φ̂(xα + ai)φ̂(xα)〉sub

(

cκs
|at

)

+ 〈φ̂(xα + at)φ̂(xα)〉sub

(

cκt
|at

)

+
(

2〈φ̂(xα)2〉sub − 〈φ̂(xα)4〉sub

)

(

cλ|at

)

]

(29)

(E − 3P )a4
t = −〈

3
∑

i=1

φ̂(xα + ai)φ̂(xα)〉sub

(

dκs
|ξ
)

− 〈φ̂(xα + at)φ̂(xα)〉sub

(

dκt
|ξ
)

−
(

2〈φ̂(xα)2〉sub − 〈φ̂(xα)4〉sub

)(

dλ|ξ
)

(30)

Notations

It is to be noted that to maintain uniformity of convention with the figures show-

ing the numerical results, we shall henceforth refer to the operators 〈
∑3

i=1 φ̂(xα +

ai)φ̂(xα)〉 and 〈φ̂(xα + at)φ̂(xα)〉 as 〈hops〉 and 〈hopt〉 respectively. The other oper-

ators shall be represented by their usual notations used here.
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Chapter 3

Numerical Techniques

The chief tools used in the non-perturbative study of a field theory on the lattice are

the Monte-Carlo methods of importance sampling. Using Markov processes, equi-

librium configurations are generated such that the probability density for a config-

uration C is proportional to the Boltzmann factor

peq(C) ∝ e−S(C) (31)

where S(C) is the action associated with the given configuration. Operators of

interest are then measured on these configurations.

3.1 Metropolis Algorithm

Proposed in [19], this algorithm is widely used in numerical simulations. Following

pseudo-code describes the method of implementing this algorithm for the case of

our interest

1. Choose an initial state

2. Choose a site i

13
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3. Propose a change in the field value at i by a random number generator

4. Calculate the change in the action, ∆S that results from such a change

5. Generate a random number r, s.t. 0 < r < 1

6. If r < exp[−∆S], then accept the change

7. Go to the next site and repeat from step 3

8. Scanning the entire lattice in this fashion, either site by site or randomly

constitutes one sweep.

3.2 Overrelaxation Algorithm

It turns out that the simulations done using local update algorithms, suffer from

the defect of critical slowing down. At a critical point, the correlation length of

the system diverges due to the dominance of the long distance modes and one

needs huge number of local update steps to generate configurations that can be

considered to be independent. Overrelaxation algorithms circumvent this problem

by making global action preserving changes to make a system move rapidly in the

phase space. The overrelaxation algorithm is implemented as follows [9]:

1. Choose a particular site r

2. The local action at that site is

Sr = −κφ(r)h + λ[φ(r)2 − 1]2 + φ(r)2

where h =
∑

i=x,y,z,t[φ(r + i) + φ(r − i)]. At every site, we know the value of

φ, (say φ0) and hence the action, S0. This equation can be solved for at least

one more real root, φnew which will keep the action unchanged.
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Table 1: Comparison of the results form Ref. [4] and our work. The parameterset
for the runs are (λ = 0.275376, κ = 0.288998). The errors in our work are larger due
to smaller runs on smaller lattices.

〈φ〉 χφ

Ref.[4] 0.36895 ± 0.00002 12.40 ± 0.05
Our work 0.3689 ± 0.0001 12.34 ± 0.09

3. There is a density of states which needs to be taken into account. For this, cal-

culate ∆ =
∣

∣

∣

S′[φnew]
S′[φold]

∣

∣

∣
, where the bars stand to indicate the absolute value and

the differentiation is with respect to φ. φnew is accepted only if ran < ∆, where

ran is a random number between 0 an 1. Morningstar [9] has given a detailed

proof that this procedure satisfies detailed balance.

4. Do this on all the lattice sites. This produces a configuration that has the

same action; but very different values of φ.

The process is deterministic and therefore needs to be coupled to some stochastic

local update process in order to generate equilibrium configurations. We do one

step of overrelaxation followed by one step of Metropolis and call it one update

step.

3.3 Checks of the program

To check the accuracy of our program, simulations were done at (λ = 0.275376, κ =

0.288998) where we measured the vacuum expectation value of the φ field and its

susceptibility, as defined in eqn (32) and compared it with the results obtained in

[4]. The comparisons are displayed in table 1.

χφ = L4
[

〈φ2〉 − 〈|φ|〉2
]

(32)

To get further confidence of the physics results obtained with our program we

compared it with the results of the perturbation theory in the vicinity of the critical
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point. In this region the physics is expected to be captured by perturbation theory

and the agreement would seem natural [2]. In the symmetric phase, we did the

simulations at a fixed λ = 0.011153 for different κ. The mass extracted [20] was

compared with the renormalized mass obtained by integrating the Callan-Symanzik

equations at constant λ in the vicinity of the critical line where the scaling violations

can be neglected. The results shown in fig 2 indicate good agreement. Care was taken

to do simulations such that the lattice size exceeded three Compton wavelengths

and thus finite size effects small for the respective masses.

Moreover, the perturbation theory result seems to indicate that the phase transition

occurs at κ = 0.2544. This was also checked with our program. The phase transition

point was located by looking at the susceptibility curve with the couplings as shown

in fig 3. The results perfectly agree with the perturbation theory results.

3.4 Run details of the code

The algorithm that was chosen for the code used to get the physical results was the

overrelaxation-Metropolis algorithm. Having verified that our code produces results

that are in agreement with the existing values in the literature, the program was

optimized to improve the performance.

First, we compared the autocorrelation times in the overrelaxation-Metropolis vs

pure Metropolis both near and away from the critical point. The results of this

comparison is shown in the fig 4.

The time per spin update and the time required to generate independent configu-

rations in both these algorithms is indicated in table 2. For this comparison, con-

figurations that were separated by 3τint are taken to be independent. The time

measurements for independent configurations was done on a 104 lattice at the crit-

ical point.
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in [2].
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Table 2: Run details of the code

Metropolis Overrelaxation improved Metropolis
Spin update times ∼ 10ns ∼ 60ns

Time to generate indep configs* 1s 0.4s
compiler Intel C/C++ compiler

compiler version 9.1
compiler flags -fast

CPU Intel Xeon CPU@ 3.0 GHz
*Configurations that were separated by 3τint are taken to be independent for this

comparison.

3.5 Error Analysis

The variance was calculated by binning the data for different bin sizes. It was

checked that for large enough bin size, the Central Limit Theorem is followed and

the variance estimates show a plateau. The acceptable bin size would have to be

bigger than the minimum bin size above which the calculated variance becomes

flat. A typical plot showing the bin-size dependence of the variance for all the

measured operators at a particular coupling and boundary condition is shown in

fig 5. In all the cases, it was found that the value of the minimum bin size was

∼ 1000. We adopted the jackknife analysis [24] [25] [26] in calculating the errors

where we took the number of blocks to be 20. The size of our data was such that

the size of each bin was ∼ 10000 and larger, ensuring that we were well above the

minimum bin size limit.

When it was necessary to determine the errors on the masses extracted non per-

turbatively from the correlators [27], a covariance matrix was constructed to take

account of the fact that the measurements are correlated. The covariance matrix

was used to estimate the zero temperature masses used as parameters for further

calculations of the thermodynamic quantities. The details of this procedure are

given in [20].
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Chapter 4

Physics Results

4.1 Choice of points for simulation

The simulations were done on lines of constant gR. On these lines the physics at low

energies remain constant and they go by the name of Renormalization Group(RG)

trajectories. On a specific RG trajectory a point was chosen where the scaling

violations were expected to be negligible. As defined in [2], a “scaling region” is a

region in the phase diagram where the low energy amplitudes depend only weakly on

the cutoff. The region where one can neglect the scaling violations has been worked

out in [2]. In this region a weak-coupling perturbation theory is applicable in the

computation of zero-temperature physics. The first simulations were performed at

(κ = 0.2516, λ = 0.011153) taking care that the lattice volume was more than three

times the corresponding Compton wavelength. The physical mass was extracted

non-perturbatively at this point [20]. To keep the physics constant as we approach

the continuum limit, we restrict ourselves to the RG trajectory passing through

this point (which we have labelled as A) and try to reach points where the cutoff

effects play a lesser role while still having a sufficiently large lattice such that the

finite volume effects are under control. Points B, C and D lying on the same RG

trajectory were chosen such that the cutoff effects at those points are lesser than

21
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that at point A by factors of 4/5, 2/3 and 1/2 respectively. Finite size scaling is

done to establish the thermodynamic limit. That is the major object of the rest of

the work. To achieve this the following procedure was adopted:

1. From the values of (κ, λ) and extracted ma, gR was obtained upto 1-loop order

in perturbation theory. For this the following relation was used [21]:

gR = g0 −
3

2
g2
0J2(mR) (33)

where J2 is the contribution of the diagrams shown in fig 1 that contribute to

coupling constant renormalization.

2. Then a smaller mass value was chosen (e.g. that for point B) which we wanted

to study. This value was reinserted in eq.(33) and it was solved for g0, keeping

the value of gR fixed as obtained in the last step.

3. Once g0 is obtained, we can get an estimate of the required (κ, λ) using the

eqn 12.

4. A narrow scan in κ was done about the predicted values to ensure that the

estimate of the physical mass is indeed correct.

5. As a self consistency check gR was recalculated at this new point. For all the

points considered this way, the variation in gR was less than 1 percent.

The points for simulation obtained this way are shown in the fig 6 and the param-

eters at these points are listed in table 3.

Inaccuracies :Clearly, the use of 1 loop in perturbation theory is a crude approxi-

mation but was done since the results for the higher loops were not readily avail-

able. Physically, this could imply that we might not lie in the “actual” trajectory

for all the points and in such a case the continuum limit may not be obtained from

the results. However the existence of the thermodynamic limit can still be examined

from our results as shown later.
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λ

κ

Figure 6: A cartoon showing the relative positions of the points on which the
simulations were done. Above the critical line there is the broken phase; while above
the lower dashed line and below the critical line is the region where the perturbative
Callan-Symanzik equations can be applied [2].

Table 3: Parameter values at each of the different points. gR is calculated in 1 loop
perturbation theory. For comparison, estimate of mass in 1 loop perturbation theory
is also shown. For details of the analysis of masses see section 3.5.

No. κ λ gR ma ma(in 1 loop)
A 0.2516 0.011153 3.1772 0.2853 ± 0.0002 0.3012
B 0.2526 0.0117 3.18955 0.2376 ± 0.0003 0.2586
C 0.253452 0.0122 3.16478 0.1897 ± 0.0002 0.2172
D 0.25438 0.0134 3.17108 0.1416 ± 0.0002 0.1834
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Table 4: Operator expectation values at point A. For a note on error analysis see
section 3.5

LT 〈φ2〉 〈φ4〉 〈hops〉 〈hopt〉
Nt = 4

2 0.61822± 0.00005 1.1118± 0.0001 0.3821± 0.0001 0.13156± 0.00004
3 0.61030± 0.00002 1.08442± 0.00006 0.35707± 0.00004 0.12338± 0.00002
4 0.60906± 0.00001 1.08014± 0.00003 0.35316± 0.00001 0.12210± 0.00001

Nt = 6
2 0.60402± 0.00001 1.06286± 0.00004 0.34018± 0.00003 0.11394± 0.00001
3 0.603018± 0.000005 1.05945± 0.00002 0.33702± 0.00001 0.112902± 0.000004
4 0.602928± 0.000003 1.05914± 0.00001 0.336713± 0.000006 0.112804± 0.000002

Table 5: Operator expectation values at point B. For a note on error analysis see
section 3.5

LT 〈φ2〉 〈φ4〉 〈hops〉 〈hopt〉
Nt = 4

2 0.62600± 0.00006 1.1374± 0.0002 0.4064± 0.0002 0.13980± 0.00006
3 0.61437± 0.00003 1.0970± 0.0001 0.36974± 0.00009 0.12775± 0.00003
4 0.612187± 0.000008 1.08948± 0.00002 0.36286± 0.00002 0.125485± 0.000008

Nt = 6
2 0.60719± 0.00001 1.07232± 0.00004 0.35014± 0.00003 0.11730± 0.00001
3 0.605310± 0.000004 1.06590± 0.00002 0.344236± 0.000009 0.115359± 0.000003
4 0.605095± 0.000002 1.065167± 0.000008 0.343531± 0.000006 0.115127± 0.000002

4.2 Measurement of EOS

4.2.1 Operator expectation values

To get the equation of state, first we tabulate the operator expectation values. The

errors on these measurements were calculated according to the discussion in section

3.5. The results of these measurements are shown in the tables 4, 5, 6 and 7.

4.2.2 Zero temperature subtraction

Zero temperature subtraction has been discussed in section 2.2. To have an idea of

the correct subtraction scheme to be used in our case, we performed subtraction
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Table 6: Operator expectation values at point C. For a note on error analysis see
section 3.5

LT 〈φ2〉 〈φ4〉 〈hops〉 〈hopt〉
Nt = 4

2 0.63622± 0.00006 1.1718± 0.0002 0.4385± 0.0002 0.15056± 0.00006
3 0.61956± 0.00002 1.11363± 0.00008 0.38603± 0.00008 0.13329± 0.00003
4 0.61576± 0.00001 1.10052± 0.00005 0.37408± 0.00004 0.12936± 0.00001

Nt = 6
2 0.61133± 0.00003 1.0852± 0.0001 0.3632± 0.0001 0.12169± 0.00003
3 0.60788± 0.00001 1.07343± 0.00004 0.35236± 0.00003 0.11811± 0.00001
4 0.607335± 0.000005 1.07156± 0.00002 0.35064± 0.00001 0.117545± 0.000004

Table 7: Operator expectation values at point D. For a note on error analysis see
section 3.5

LT 〈φ2〉 〈φ4〉 〈hops〉 〈hopt〉
Nt = 4

2 0.6469± 0.0001 1.2055± 0.0005 0.4739± 0.0004 0.1624± 0.0001
3 0.62525± 0.00005 1.1300± 0.0002 0.4057± 0.0002 0.13992± 0.00006
4 0.61927± 0.00003 1.10939± 0.00009 0.38682± 0.00009 0.13369± 0.00003

Nt = 6
2 0.61647± 0.00004 1.0997± 0.0001 0.3811± 0.0001 0.12769± 0.00004
3 0.61030± 0.00001 1.07866± 0.00005 0.36169± 0.00004 0.12126± 0.00002
4 0.609051± 0.000008 1.07440± 0.00003 0.35776± 0.00002 0.119956± 0.000008
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on the operators of a N3
s × 4 lattice using the corresponding values obtained using

lattices ranging from 404 till N4
s at point C. The results for the thermodynamic

quantities are displayed in figures 7 and 8. Our results indicate that a plateau is

reached for all the thermodynamic quantities when the subtraction lattices used N4

are much greater than N4
s . In particular, the result of subtracting with a 404 lattice

agrees with the results obtained by subtraction from the N4 lattices except when

N is comparable to Ns. Thus, we chose to subtract using the largest lattices that

we have simulated which is 404.

Erratic jumps of the data are observed in the results for the lattices 324 and 364. We

have been unable to account for the jumps. General investigation involving giving

reruns at the same couplings with different initial conditions and random number

seeds yielded the same results. Moreover reanalyzing the datasets by differing the

number of jackknife blocks etc. again produced the same results.

4.2.3 Thermodynamic Quantities

Having determined the subtracted operators, it is straightforward to use the for-

mulae in eqn.(30) to get results for energy density, pressure and the “interaction

measure”. These results are displayed in tables 8, 9, 10 and 11. The issue that we

study here is the thermodynamic limit for which we use finite size scaling.

4.2.4 Finite Size scaling

To establish the thermodynamic limit at constant physics we compare the Nt = 4

and the Nt = 6 lattices at each of the four different points. The parameters that

affect the finite size effects are mL and LT ; since these are the only dimensionless

quantities that can be constructed that have an explicit volume dependence. To

have a quantitative understanding of the finite size effects, we tabulate the local

slopes for the thermodynamic quantities as a function of LT (see table 12) and

plotted in figures 9, 10 and 11.
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Table 8: Thermodynamic quantities at point A in lattice units. For a note on error
analysis see section 3.5

LT E P E − 3P

Nt = 4
2 (1.799 ± 0.002) × 10−3 (4.873 ± 0.005) × 10−4 (3.369 ± 0.007) × 10−4

3 (1.763 ± 0.001) × 10−3 (5.265 ± 0.004) × 10−4 (1.835 ± 0.003) × 10−4

4 (1.7565 ± 0.0007) × 10−3 (5.323 ± 0.002) × 10−4 (1.594 ± 0.001) × 10−4

Nt = 6
2 (2.461 ± 0.007) × 10−4 (6.15 ± 0.02) × 10−5 (6.16 ± 0.02) × 10−5

3 (2.392 ± 0.006) × 10−4 (6.57 ± 0.02) × 10−5 (4.212 ± 0.006) × 10−5

4 (2.391 ± 0.004) × 10−4 (6.63 ± 0.01) × 10−5 (4.025 ± 0.004) × 10−5
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Table 9: Thermodynamic quantities at point B in lattice units. For a note on error
analysis see section 3.5

LT E P E − 3P

Nt = 4
2 (1.948 ± 0.002) × 10−3 (5.481 ± 0.007) × 10−4 (3.039 ± 0.008) × 10−4

3 (1.863 ± 0.001) × 10−3 (5.698 ± 0.004) × 10−4 (1.537 ± 0.004) × 10−4

4 (1.845 ± 0.001) × 10−3 (5.731 ± 0.003) × 10−4 (1.255 ± 0.001) × 10−4

Nt = 6
2 (2.86 ± 0.01) × 10−4 (7.48 ± 0.04) × 10−5 (6.10 ± 0.01) × 10−5

3 (2.693 ± 0.009) × 10−4 (7.75 ± 0.03) × 10−5 (3.670 ± 0.004) × 10−5

4 (2.677 ± 0.009) × 10−4 (7.80 ± 0.03) × 10−5 (3.379 ± 0.003) × 10−5

Table 10: Thermodynamic quantities at point C in lattice units. For a note on error
analysis see section 3.5

LT E P E − 3P

Nt = 4
2 (2.146 ± 0.002) × 10−3 (6.336 ± 0.005) × 10−4 (2.457 ± 0.005) × 10−4

3 (1.982 ± 0.001) × 10−3 (6.210 ± 0.003) × 10−4 (1.190 ± 0.002) × 10−4

4 (1.9450 ± 0.0007) × 10−3 (6.183 ± 0.002) × 10−4 (9.002 ± 0.008) × 10−5

Nt = 6
2 (3.446 ± 0.009) × 10−4 (9.61 ± 0.03) × 10−5 (5.61 ± 0.02) × 10−5

3 (3.063 ± 0.007) × 10−4 (9.22 ± 0.02) × 10−5 (2.981 ± 0.007) × 10−5

4 (3.011 ± 0.006) × 10−4 (9.18 ± 0.02) × 10−5 (2.563 ± 0.003) × 10−5

Table 11: Thermodynamic quantities at point D in lattice units. For a note on error
analysis see section 3.5

LT E P E − 3P

Nt = 4
2 (2.476 ± 0.004) × 10−3 (7.76 ± 0.01) × 10−4 (1.465 ± 0.005) × 10−4

3 (2.168 ± 0.002) × 10−3 (6.989 ± 0.006) × 10−4 (7.18 ± 0.02) × 10−5

4 (2.082 ± 0.002) × 10−3 (6.770 ± 0.005) × 10−4 (5.10 ± 0.01) × 10−5

Nt = 6
2 (4.66 ± 0.02) × 10−4 (1.415 ± 0.006) × 10−4 (4.13 ± 0.01) × 10−5

3 (3.68 ± 0.01) × 10−4 (1.161 ± 0.004) × 10−4 (1.973 ± 0.005) × 10−5

4 (3.48 ± 0.01) × 10−4 (1.109 ± 0.004) × 10−4 (1.536 ± 0.003) × 10−5
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The results show that as we decrease ma at fixed LT the finite size effects become

larger, as expected. It is also seen that at fixed m and for the same Nt, the absolute

value of the slope decreases with larger LT . In particular, for the Nt = 6 lattices, for

energy density and pressure, the local slope between the LT = 3 and LT = 4 is

zero within error. The Nt = 4 and Nt = 6 lattices at fixed m can be compared by

looking at the slopes of the thermodynamic quantities as a function of LT . The

local slope for Nt = 6 would be lesser than the Nt = 4 counterparts for the same

range of LT . This comparison also yields the expected results except in the case of

the smallest mass.

From the results, we can definitely conclude that the thermodynamic limit is reached

for the LT = 4 runs for the masses ma = 0.2853 and ma = 0.2376 since the

numerical values of the slopes between LT = 3 and LT = 4 are zero within error. For

the last two points where the finite size effects are large the situation is less clear.

Table 12: Local slopes for thermodynamic quantities

LT = 2&3 LT = 3&4
ma Nt = 4 Nt = 6 Nt = 4 Nt = 6

Slopes for E/T 4

0.2853 (9.2 ± 0.6) × 10−3 (9 ± 1) × 10−3 (1.6 ± 0.4)× 10−4 (2 ± 9) × 10−4

0.2376 (2.17 ± 0.06)× 10−2 (2.1 ± 0.2)× 10−2 (4.7 ± 0.4)× 10−3 (2 ± 2) × 10−3

0.1897 (4.21 ± 0.05)× 10−2 (4.9 ± 0.2)× 10−2 (9.5 ± 0.3)× 10−3 (7 ± 1) × 10−3

0.1416 (7.9 ± 0.1) × 10−2 (1.27 ± 0.03)× 10−1 (2.22 ± 0.06)× 10−2 (2.6 ± 0.2) × 10−2

Slopes for P/T 4

0.2853 (−1.00 ± 0.02)× 10−2 (−5.4 × 0.4) × 10−3 (−1.5 ± 0.1) × 10−3 (−7 ± 3) × 10−4

0.2376 (−5.5 ± 0.2) × 10−3 (−3.5 ± 0.7) × 10−3 (−8 ± 1) × 10−4 (−6 ± 6) × 10−4

0.1897 (3.2 ± 0.2) × 10−3 (5.1 ± 0.5)± 10−3 (7 ± 1) × 10−4 (5 ± 4) × 10−4

0.1416 (1.99 ± 0.03)× 10−2 (3.29 ± 0.09)× 10−2 (5.6 ± 0.2)× 10−3 (6.7 ± 0.8) × 10−3

Slopes for (E − 3P )/T 4

0.2853 (3.92 ± 0.02)× 10−2 (2.52 ± 0.03)× 10−2 (6.15 ± 0.08)× 10−3 (2.42 ± 0.09)× 10−3

0.2376 (3.84 ± 0.02)× 10−2 (3.14 ± 0.02)× 10−2 (7.22 ± 0.09)× 10−3 (3.78 ± 0.07)× 10−3

0.1897 (3.24 ± 0.01)× 10−2 (3.41 ± 0.03)× 10−2 (7.42 ± 0.05)× 10−3 (5.4 ± 0.1) × 10−3

0.1416 (1.91 ± 0.01)× 10−2 (2.80 ± 0.02)× 10−2 (5.33 ± 0.05)× 10−3 (5.66 ± 0.08)× 10−3
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Chapter 5

Conclusion

In this work we have studied the thermodynamics of an interacting φ4 theory in

4 space-time dimensions with the action given in equation 10. We have used per-

turbation theory to 1 loop order to evaluate the β and γ functions (eqn. 22) and

the anisotropy coefficients (eqn. 25,26). In particular this is the first report for the

calculation of the anisotropy coefficient upto 1 loop in an interacting φ4 theory. The

renormalisation conditions used are stated in section 2.2.1. The expressions used for

the thermodynamic quantities are listed in section 2.3.

The algorithms used in the numerical study are explained in the sections 3.1 and

3.2. The numerical checks that were made with existing results in the literature are

tabulated in table 1. The technical specifications of the machines used to run the

code and estimate of the run times are covered in table 2. A note on error analysis

is given in section 3.5.

The choice of the points for simulation are discussed in section 4.1. The results

of the measurements of the operators and the thermodynamic quantities in lattice

units are given in tables 4 to 11. Removal of ultraviolet divergences via subtraction

is the subject of section 4.2.2. A discussion on the thermodynamic limit is given in

section 4.2.4.

Future work will consider smaller lattice spacings keeping the physical parameters

constant and thus taking the continuum limit.
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